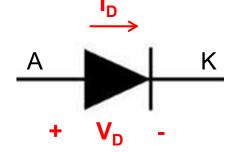
Agenda


- Diodo Introdução
 - Materiais semicondutores, estrutura atômica, bandas de energia
 - Dopagem Materiais extrínsecos
 - Junção PN
- Polarização de diodos
- Curva característica
- Modelo ideal e modelos aproximados
- Análise de circuitos básicos
- Tipos de diodo
- Exercícios

Introdução

Diodo → dispositivo semicondutor de dois terminais com resposta V-I (tensão/corrente) não linear (dependente da polaridade!)

Diodo ideal:

Símbolo:

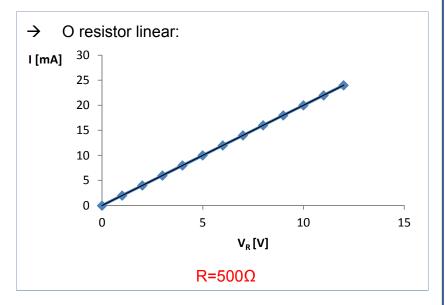
A = Ânodo (ou anodo)

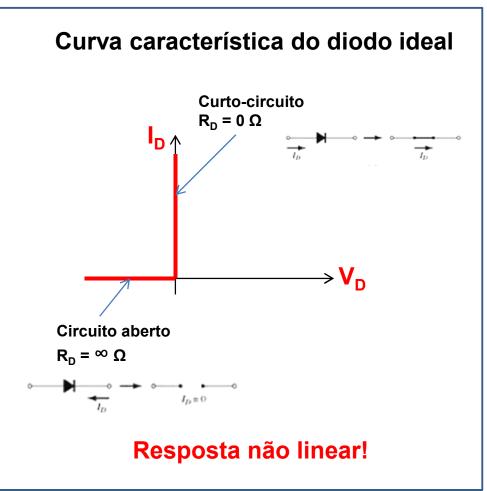
K = cátodo

(a) O Diodo conduz: $I_D > 0$ se $V_D > 0$

→ V_A > V_K (a tensão no Anodo é maior que a tensão no cátodo)

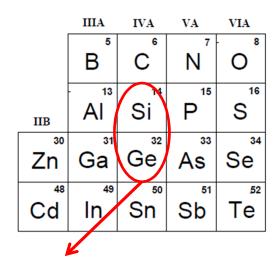
(b) O Diodo não conduz: $I_D = 0$ se $V_D \le 0$


 \rightarrow $V_A \le V_K$ (a tensão no Anodo é menor ou igual que a tensão no cátodo)

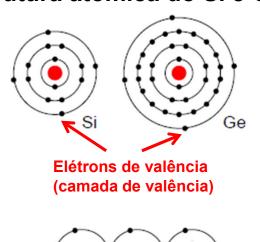

O diodo ideal:

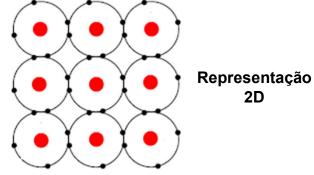
- pode ser considerado como uma chave que pode conduzir corrente somente em um sentido (definido pela seta do símbolo).
- → Fornece uma visão global sobre o comportamento do diodo, mas não representa características importantes do dispositivo!

Introdução


Diodo ideal – resposta

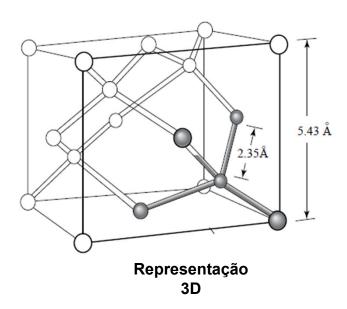
Materiais semicondutores


 Semicondutores: possuem um nível de condutividade entre os extremos de um isolante e um condutor

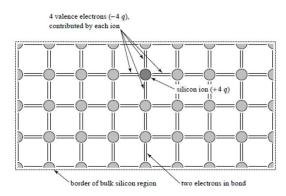


Semicondutores mais utilizados: Si = Silício → mais produzido Ge = Germânio

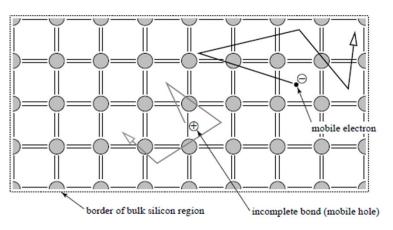
* Outros semicondutores: Carbono (C) GaAs, InP, InGaAs, InGaAsP, ZnSe, CdTe


Estrutura atômica do Si e Ge:

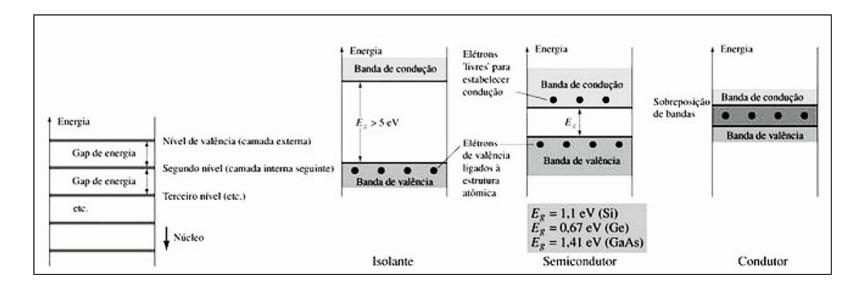
Ligação covalente (Compartilhamento de elétrons)


Estrutura cristalina do Silício

→ Material semicondutor Intrínseco: semicondutor que foi refinado para reduzir as impurezas a um nível muito baixo.


→ condutor fraco.

Temperatura = 0K


- Todas as ligações estão satisfeitas
- Não há elétrons livres

Temperatura ambiente

- Algumas ligações estão "quebradas"
- Há elétrons livres
- Há lacunas

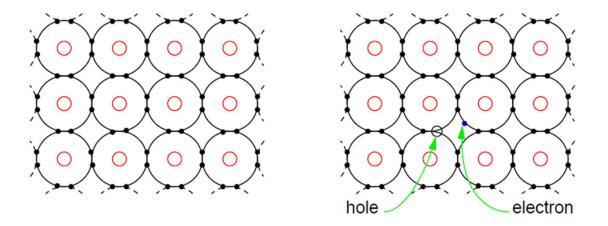
Níveis de energia

- Gaps: intervalos entre níveis de energia
- O aumento da Temperatura pode liberar um elétron da estrutura cristalina. Este elétron é livre para condução na estrutura cristalina.

^{*} Obs.: Em materiais semicondutores, o aumento da temperatura do material confere maior energia aos elétrons da banda de valência, fazendo com que a quantidade de elétrons que atingem a banda de condução aumente. Com isso, pode-se dizer que a condutividade de materiais semicondutores aumenta com a temperatura, ao contrario dos materiais condutores, os quais perdem condutividade com o aumento da temperatura. Dizemos que os materiais semicondutores possuem coeficiente de temperatura negativo, enquanto os condutores possuem coeficiente de temperatura positivo.

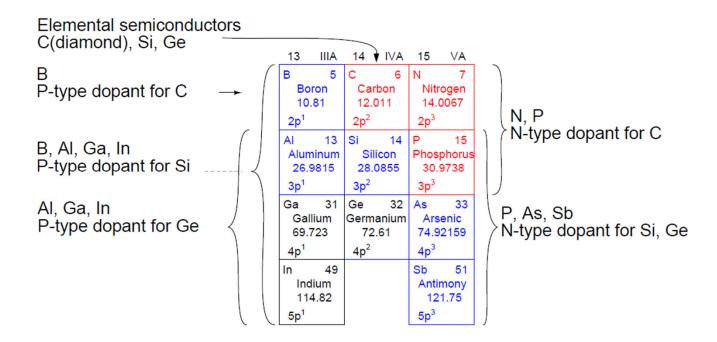
→ O aumento da Temperatura pode liberar um elétron da estrutura cristalina.

Este elétron é livre para condução na estrutura cristalina.

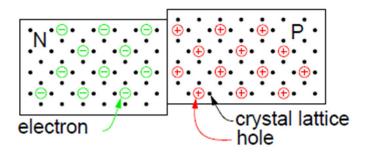

O elétron livre deixa um local livre com carga positiva chamado de lacuna (hole).

Os elétrons livres e as lacunas não permanecem fixos na estrutura.

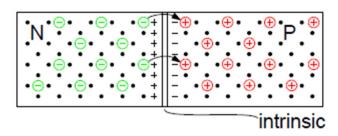
Os elétrons livres e lacunas contribuem para a condução sobre a estrutura cristalina.


A energia térmica pode gerar um par elétron livre – lacuna, resultando em uma condução fraca.

Um elétron é livre até encontrar uma lacuna → Recombinação.

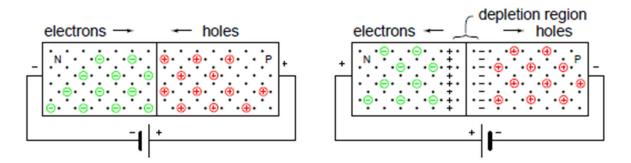

→ Semicondutores puros não são úteis. Assim, semicondutores devem ser refinados e sofrer a adição de "impurezas" (dopagem) → melhora a condução!

- Dopagem: adição de átomos (impurezas) para modificar as propriedades elétricas de um semicondutor. → aumenta a condutividade!
- → <u>Material extrínseco:</u> semicondutor submetido ao processo de dopagem.
- → Material do Tipo n: semicondutor dopado com impurezas pentavalentes (5 elétrons de valência, *atómos doadores*) para criar elétrons livres.
- → Material do Tipo p: semicondutor dopado com impurezas trivalentes (três elétrons de valência, *átomos aceitadores*) para criar lacunas.



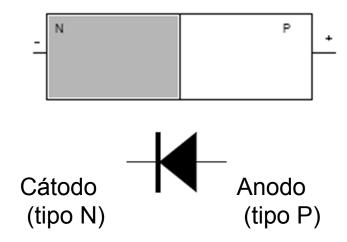
→ Portadores majoritários e minoritários em materiais extrínsecos

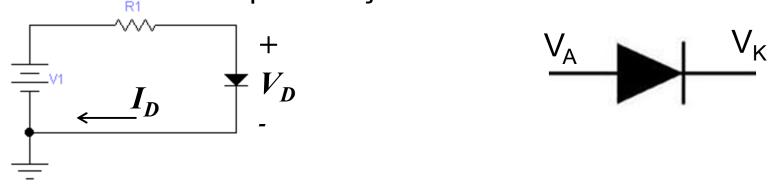
- → Material do Tipo n: elétron é o portador majoritário e a lacuna é o portador minoritário;
- → Material do Tipo p: a lacuna é o portador majoritário e o elétron é o portador minoritário.
- → Os materiais dos Tipos n e p representam os blocos básicos de construção de dispositivos semicondutores!
- → Junção P-N: formada em semicondutores com ambos materiais tipo P e N
- A separação das cargas na junção P-N constitui uma barreira de potencial (região de depleção); -> formada no processo de fabricação;
- A barreira de potencial pode ser ultrapassada através da aplicação de uma fonte externa de tensão.


Blocos de materiais tipo N e P em contato → sem efeito.

Semicondutor dopado com impurezas N e P desenvolve uma <u>barreira de</u> <u>Potencial!</u>

Polarização:


- Polarização direta: aplicação de uma tensão positiva entre o anodo e catodo;
 Tensão suficiente para atravessar a barreira de potencial →corrente elétrica
- Polarização reversa: aplicação de uma tensão negativa entre o anodo e catodo;
 - → Não há condução de corrente elétrica


Polarização direta

Polarização reversa

→ O diodo (de junção PN): dispositivo unidirecional

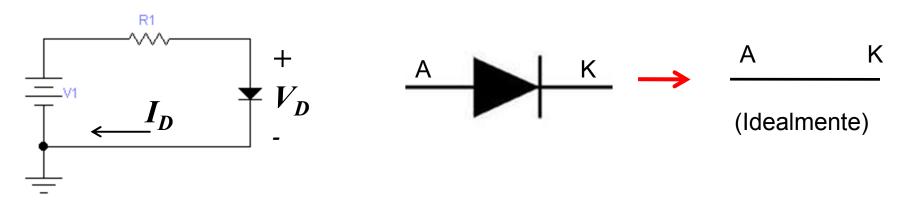
- Polarização direta:
- Circuito básico de polarização direta:

→ O diodo conduz a corrente elétrica.

Considerações para polarização direta:

- A tensão no ânodo (V_A) deve ser maior que a tensão no cátodo (V_K) . Isto é, $V_A > V_K$
- A queda de tensão no diodo ($V_D = V_A V_K$) deve ser maior do que a <u>tensão limiar</u> do diodo (V_T).

Depende do material!

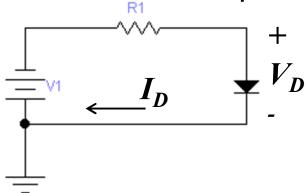

- Polarização direta:
- Circuito básico de polarização direta:

- -A **tensão limiar** (*threshold*) do diodo (**V**_T) depende do material semicondutor. Os materiais mais utilizados são:
 - **Silício** (Si): V_T ≈ 0,7 V
 - Germânio (Ge): V_T ≈ 0,3 V

Polarização direta:

Circuito básico de polarização direta:

 - Idealmente, o diodo se comporta como uma chave fechada (curto) quando está polarizado diretamente (V_D = 0V).

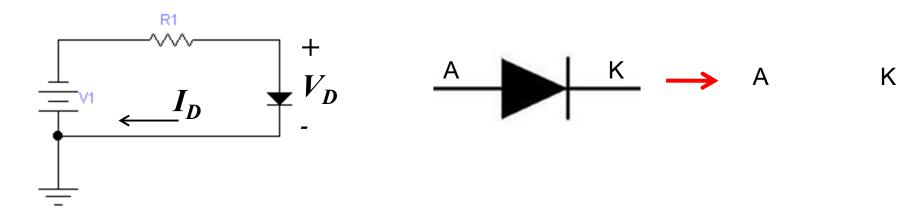

Entretanto, a queda de tensão no diodo real é igual à tensão limiar.

Ex.: para o diodo de silício, a queda de tensão no diodo é de aproximadamente 0,7V

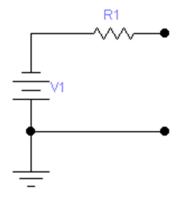
$$V_D = V_T \approx 0.7 \text{ V}$$

Polarização reversa:

Circuito básico de polarização reversa:


→ O diodo não conduz a corrente elétrica.

Considerações para polarização reversa:


- A tensão no ânodo (V_A) deve ser menor que a tensão no cátodo (V_K) . Isto é, $V_A < V_K$
- A queda de tensão no diodo ($V_D = V_A V_K$) deve ser menor do que a tensão limiar do diodo ($V_D < V_T$).

Polarização reversa

Circuito básico de polarização reversa:

- O diodo se comporta como uma chave aberta (circuito aberto) quando está polarizado reversamente.

Curva característica de diodos

Relação V_D x I_D

$$I_D = I_S(e^{V_D/V_T} - 1)$$

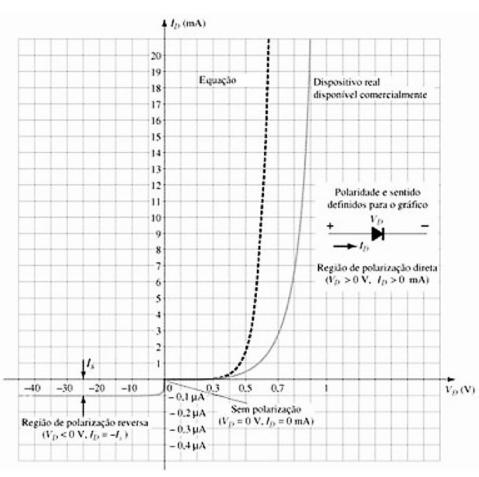
Onde,

 I_S e V_T são constantes características do diodo.

 I_S é a corrente reversa de saturação (independente da tensão do diodo V_D) Para diodos de Sílicio:

$$I_{\rm S}$$
 = 10pA $V_T = kT/q$

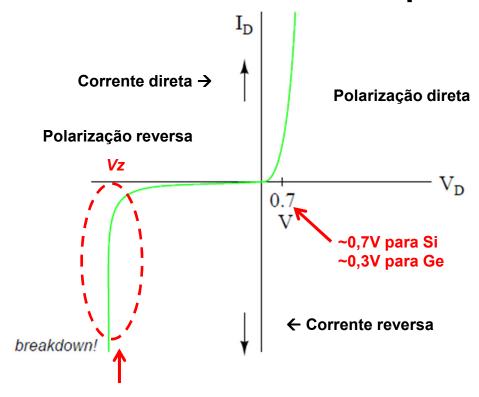
k = constante de Boltzman

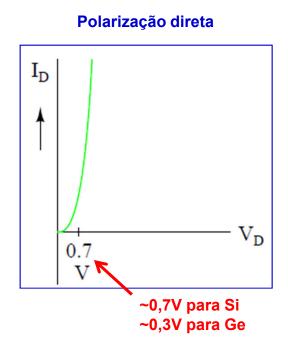

T = temperatura

q = carga elétrica

A temperatura ambiente:

$$V_{\tau} = 26 \text{mV}$$





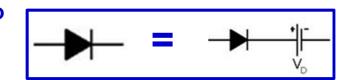
*Diferença entre as curvas: resistência interna e a resistência dos contatos

Curva característica de diodos

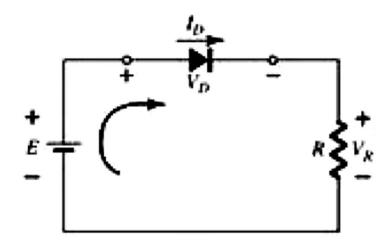
Curva característica completa:

Região Zener

→Deve ser evitada;


* Os Diodos Zener empregam apenas a Região Zener → próximas aulas!

→ O Potencial máximo de polarização reversa que pode ser aplicado antes que o diodo entre na região Zener é chamado de Tensão de Pico Inversa (PIV – Peak Inverse Voltage) ou tensão de pico reversa (PRV – Peak Reverse Voltage) → disponível no <u>DATASHEET</u> do componente (fornecido pelo fabricante)


Modelos de diodos (Circuitos equivalentes)

Modelo	Condições	Circuito equivalente	Curva característica (polarização direta)
Modelo linear por partes		→	Id Vd
Modelo Simplificado	R _{circuito} >> r _{av} Onde, r _{av} = resistência interna CA média		Id [♠] Vd
Modelo Ideal	$R_{circuito} >> r_{av}$ $E_{circuito} >> V_{T}$ Onde, $V_{T} = tensão de limiar$	—	Id _A → Vd

→ Modelo utilizado nas aulas: Modelo simplificado

Exemplo 1:Polarização direta

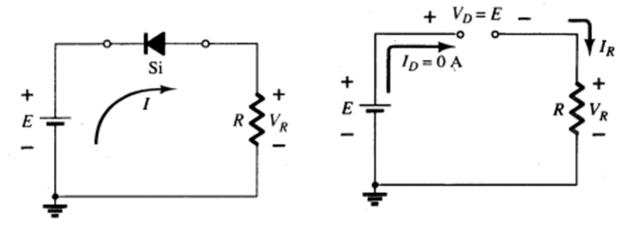
→ Diodo de Silício

- 1°) Aplicar a 2ª Lei de Kirchhoff(Lei das tensões de malha);
- → Considerar o modelo aproximado simplificado;

$$\rightarrow$$
 $V_D = V_T = 0,7V$ para Si
($V_D = V_T = 0,3V$ para Ge)

- 2°) Determinar a corrente I_D
- 3°) Determinar a tensão no resistor.

*Exemplo:

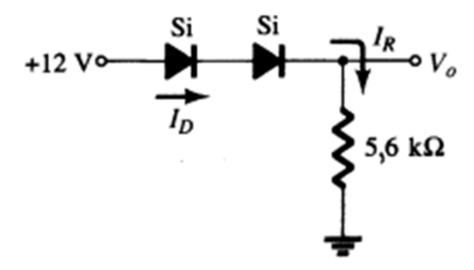

Considere os seguintes valores:

$$E = 10V$$

$$R = 1k\Omega$$

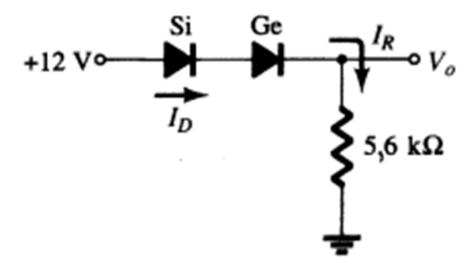
• Exemplo 2: circuito com diodo invertido (polarização

reversa).


- Determine V_R e I_D
- Exemplo 3: polarização direta de um diodo de Germânio.

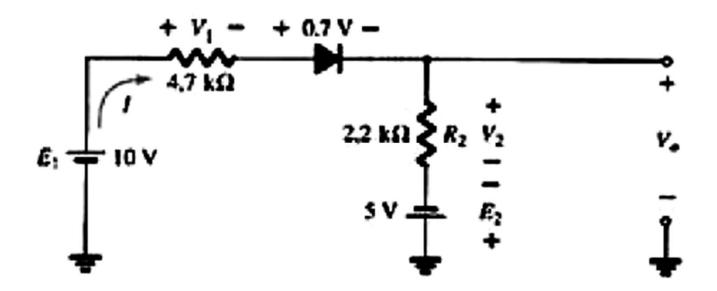
$$E = 10V$$

$$R = 1k\Omega$$


$$V_T = 0.3V \text{ (Ge)}$$

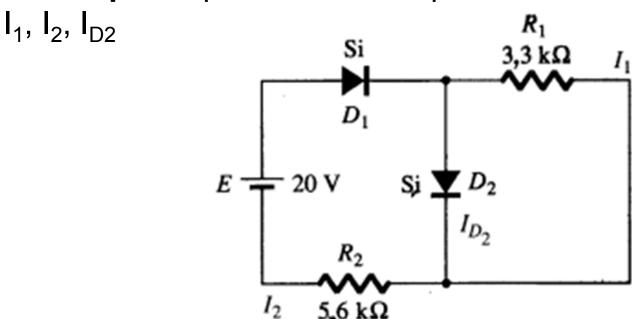
• Exemplo 4: diodos de Silício em série:

Determine V_o e I_R


• Exemplo 5: diodos de Silício e Germânio em série:

Determine V_o e I_R

Respostas: $I_R = 1,96\text{mA}$ $V_o = 11\text{V}$


• Exemplo 6:

- Determine V_o

Respostas: $V_o = -0.44V$

• Exemplo 7: para o circuito apresentado abaixo, determine:



Respostas:

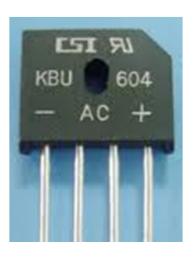
$$I_1 = 0.212 \text{ mA}$$

 $I_2 = 3.32 \text{ mA}$
 $I_{D2} = 3.108 \text{ mA}$

Diodo retificador (comum):

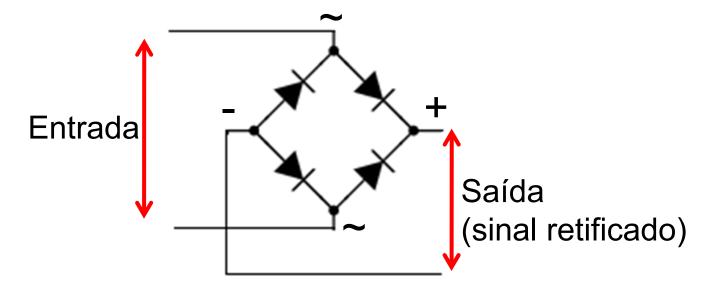
P.ex.: 1N4001

De potência


•Ponte retificadora:


→ Utilizado na parte de retificação em uma fonte de alimentação contínua (veremos nas próximas aulas!)

Exemplos:



•Ponte retificadora:

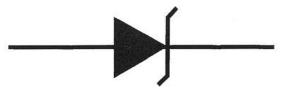
→ Utilizado para a parte de retificação em uma fonte de alimentação contínua (veremos nas próximas aulas!)

Circuito interno e simbologia:

Diodo de alta velocidade:

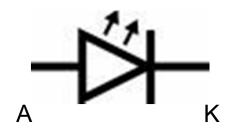
Por exemplo, 1N4148

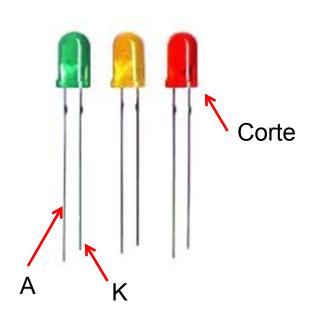
→ O 1N4148 possui um tempo de chaveamento igual a 4ns



Diodos Schottky: chaveamento rápido.

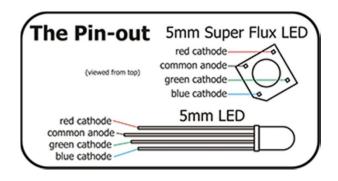
- Diodo Zener:
- → Utilizado como regulador de tensão

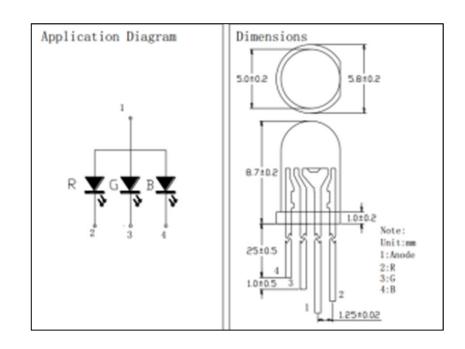

Símbolo:



Diodo LED (Light-emitting diode):

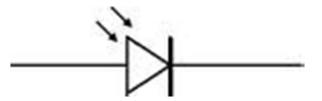
Símbolo:


•Observação:


O LED não pode ser conectado diretamente à fonte de alimentação! Sempre conecte um resistor em série (limitador de corrente).

P.ex.: 470Ω , 560Ω

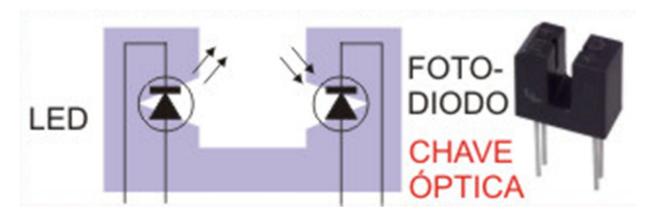
- Diodo LED (Light-emitting diode):
- **→LED RGB**



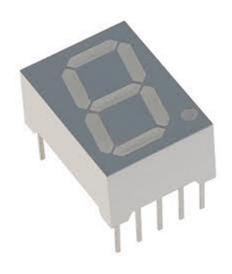
Tipo anodo comum

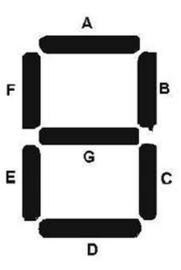
Fotodiodo

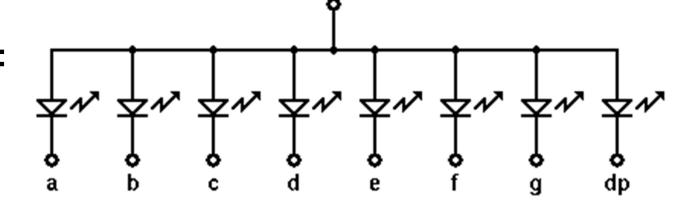
- Símbolo:



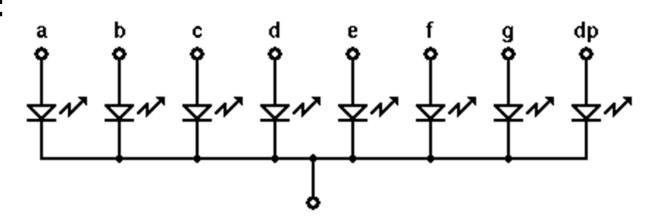
Aplicações: sensores de posição, detectores de objetos, etc.

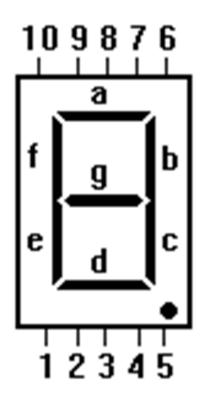



Chave óptica



- Display de 7 segmentos
- -Construído com LEDs



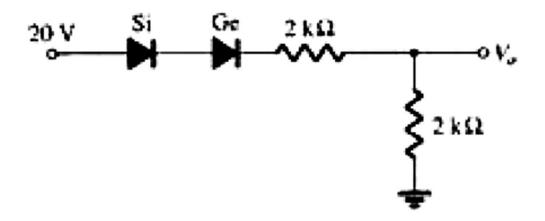

- Display de 7 segmentos
- •Tipos:
- Ânodo comum:

- Cátodo comum:

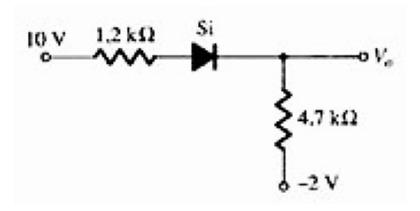
• Display de 7 segmentos Pinagem:

Pino	Significado	
1	E	
2	D	
4	С	
6	В	
7	А	
9	F	
10	G	
5	Dp (ponto)	
3, 8	comum	

- Display de 7 segmentos
- Outras configurações:

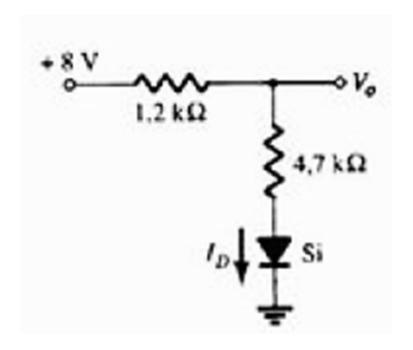

- · Há outros tipos de diodo. Por exemplo,
- -Diodo Schottky
- -Diodo tunel
- -Diodo Varicap (utilizado como capacitor em filtros, sintonizadores, etc.)
- Diodo de avalanche
- Laser
- etc...

•Tipos e símbolos:


Diode Name	Diode Symbol	Used for:	Special Characteristics
Rectifier Diode, Fast Switching Rectifier	- Diode Symbol	Converting AC to DC; Linear and switching power supplies	Can be had in very high current capacities, too slow for hf signal use.
Signal Diode	—	HF rectification, detection	Small t _r = few ns
Zener Diode	—	Voltage reference, regulation	Used in reverse breakdown
Light-emitting Diode [LED]	→	Indication, 7-segment displays	V _F 's vary with color
Photodiode	— <mark>4</mark> λ	Light detection, mech electrical conversion; solar cell	Reverse current is increased by light; in FWD direction=solar cell
Optocoupler	4*	Electrical isolation	LED and photodiode in an opaque package
Schottky Diode		VHF rectification, detecting small signals	No stored charges, >300 MHz, 0.25V V _F [metal jn]
Varactor Diode	- -	Tuning radio and TV receivers	Fairly linear C with V _R
Varistor	—	AC line spike protection	2 back-back zeners
Current Regulator	-N -d-	Constant current source	
Step-recovery Diode	—	"snap" diode generates harmonics, f multipliers	Exploits reverse-current phenomenon
Back Diode	— [Very small signal rectification	V _R smaller than V _F
Tunnel Diode	—	High frequency oscillators	Part of forward char. has negative resistance
Laser Diode	→	Reading, writing CD, DVD etc.	
PIN Diode		RF switching diode	

Exercícios

• Exercício 1: determine V_o



• Exercício 2: determine V_o

Exercícios

• Exercício 3: determine V_o e I_D

