
6. DIVISÃO DA INSTALAÇÃO EM SETORES / CENTRO DE CARGA

RECOMENDAÇÕES DA NBR 5410/97

Os circuitos terminais devem ser individualizados pela função dos equipamentos de utilização, que alimentam. Em particular, devem ser previstos circuitos terminais distintos para iluminação e tomadas de corrente.

Em unidades residenciais e acomodações de hotéis, motéis e similares, devem ser previstos circuitos independentes para cada equipamento com corrente nominal superior a 10 A.

OUTRAS RECOMENDAÇÕES

Aparelhos de ar condicionado devem ter circuitos individuais.

Cada circuito deve ter seu próprio condutor neutro.

As tomadas da copa-cozinha e área de serviço devem fazer parte de circuitos exclusivos.

Sempre que possível, deve-se projetar circuitos independentes para os quartos, salas (dependências sociais), cozinhas e dependências de serviço.

CENTRO DE CARGA

É o ponto teórico em que, para efeito de distribuição elétrica, pode-se considerar concentrada toda a carga de uma determinada área. É o ponto que deveria se localizar o quadro de distribuição de modo a reduzir ao mínimo os custos de instalação e funcionamento. Existe um processo analítico para a sua determinação, em função da potência e das coordenadas dos diversos pontos alimentados a partir do quadro de distribuição considerado.

Cada subsetor, cada setor, bem como a instalação como um todo possuem seus centros de carga e nesses pontos deveriam *idealmente* localizar-se os respectivos quadros de distribuição. Na prática, apenas em casos excepcionais, efetua-se a determinação exata dos centros de carga, recorrendo-se quase sempre a uma determinação aproximada, considerando as exigências e limitações de cada área.

O processo para localização do centro de carga é definido pelo cálculo do baricentro dos pontos considerados como de carga puntiforme e correspondentes à potência demandada de cada subsetor (ou equipamento "mais pesado"), com suas respectivas distâncias em relação a origem de um sistema de coordenadas cartesianas.

$$X = \frac{X_1 P_1 + X_2 P_2 + \dots + X_N P_N}{P_1 + P_2 + \dots + P_N}$$

$$Y = \frac{Y_1 P_1 + Y_2 P_2 + \dots + Y_N P_N}{P_1 + P_2 + \dots + P_N}$$

Nestas duas últimas equações, X e Y correspondem as coordenadas do centro de carga, P_N é a potência do subsetor N (ou da carga N) e X_N e Y_N suas respectivas coordenadas.

7. SELEÇÃO E DIMENSIONAMENTO DOS CONDUTORES

Chama-se de dimensionamento técnico de um circuito à aplicação dos diversos itens da NBR 5410 relativos à escolha da seção de um condutor e do seu respectivo dispositivo de proteção.

Os principais critérios da norma são:

- ➤ Seção mínima
- Capacidade de condução de corrente
- ➤ Queda de tensão
- ➤ Sobrecarga

Para considerarmos um circuito completa e corretamente dimensionado, é necessário aplicar os seis critérios acima, cada um resultando em uma seção e considerar como seção final a maior dentre todas as obtidas.

Especial atenção deve ser dispensada ao dimensionamento de condutores em circuitos onde haja a presença de harmônicas. Esse assunto é abordado no item 6.2.6.4 da NBR 5410/97.

7.1. Seção mínima

Conforme NBR 5410/97, item 6.2.6

• Condutor Fase:

As seções dos condutores fase não devem ser inferiores aos valores dados na Tabela 1.

Tabela 1 - Seções mínimas dos condutores isolados (*)

Tipo de instalação	Utilização do circuito	Seção mínima do condutor de cobre isolado (mm²)
Instalações fixas	Circuitos de iluminação	1,5
	Circuitos de força (incluem tomada)	2,5
	Circuitos de sinalização e circuitos de controle	0,5
Ligações flexíveis	Para um equipamento específico	Como especificado na norma do equipamento
	Para qualquer outra aplicação	0,75
	Circuitos a extrabaixa tensão para apli- cações especiais	0,75

^(*) De acordo com a Tabela 43 da NBR 5410/97.

• **Condutor Neutro**:

Conforme 6.2.6.2 da NBR 5410/97, o condutor neutro deve possuir, no mínimo, a mesma seção que os condutores fase nos seguintes casos:

- > em circuitos monofásicos e bifásicos;
- > em circuitos trifásicos, quando a seção do condutor fase for igual ou inferior a 25 mm²;
- > em circuitos trifásicos, quando for prevista a presença de harmônicas.

Conforme 6.2.6.3 da NBR 5410/97, apenas nos circuitos trifásicos é admitida a redução do condutor neutro nos seguintes casos:

- quando não for prevista a presença de harmônicas;
- > quando a máxima corrente susceptível de percorrer o neutro seja inferior à capacidade de condução de corrente correspondente à seção reduzida do condutor neutro.

Os valores mínimos da seção do condutor neutro nestes casos estão indicados na Tabela 2.

Tabela 2 - Seção do condutor neutro (*)

Seção dos condutores fase (mm²)	Seção mínima do condutor neutro (mm²)
S < 25	S
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
400	240
500	240
630	400
800	400
1000	500

(*) De acordo com a Tabela 44 da NBR 5410/97

Obs.: ver restrições à redução da seção do condutor neutro na NBR 5410/97.

• Condutor de Proteção:

A NBR 5410/97 recomenda o uso de CONDUTORES DE PROTEÇÃO (designados por PE), que, preferencialmente, deverão ser condutores isolados, cabos unipolares ou veias de cabos multipolares.

A Tabela 3, indica a seção mínima do condutor de proteção em função da seção dos condutores fase do circuito. Em alguns casos, admite-se o uso de um condutor com a função dupla de neutro e condutor de proteção. É o condutor PEN (PE + N), cuja seção mínima é de 10 mm², se for condutor isolado ou cabo unipolar, ou de 4 mm², se for uma veia de um cabo multipolar.

Tabela 3 - Seções mínimas dos condutores de proteção (*)

Seção do condutor fase (mm²)	Seção do condutor de proteção (mm²)
1,5	1,5 (mínima)
2,5	2,5
4	4
6	6
10	10
16	16
25	16
35	16
50	25
70	35
95	50
120	70
150	95
185	95
240	120
300	150
400	240
500	240
630	400
800	400
1000	500

Cores dos Condutores Neutro e de Proteção:

A NBR 5410/97 prevê no item 6.1.5.3 que os condutores de um circuito devem ser identificados, porém deixa em aberto o modo como fazer esta identificação. No caso de o usuário desejar fazer a identificação por cores, então devem ser adotadas aquelas prescritas na norma, a saber:

- Neutro (N) = azul-claro;
- Condutor de proteção (PE) = verde-amarela ou verde;
- Condutor PEN = azul-claro com indicação verde-amarela nos pontos visíveis.

^(*) De acordo com a Tabela 53 da NBR 5410/97.